

open Gov

AEQUITAS Framework for Fair AI

From Opportunity to Compliance

Roberta Calegari, 6 Ottobre 2025

AI TODAY: Facts

GENDER- BIASED HIRING TOOL amazon

98.7% 68.6%

100% 92.9%

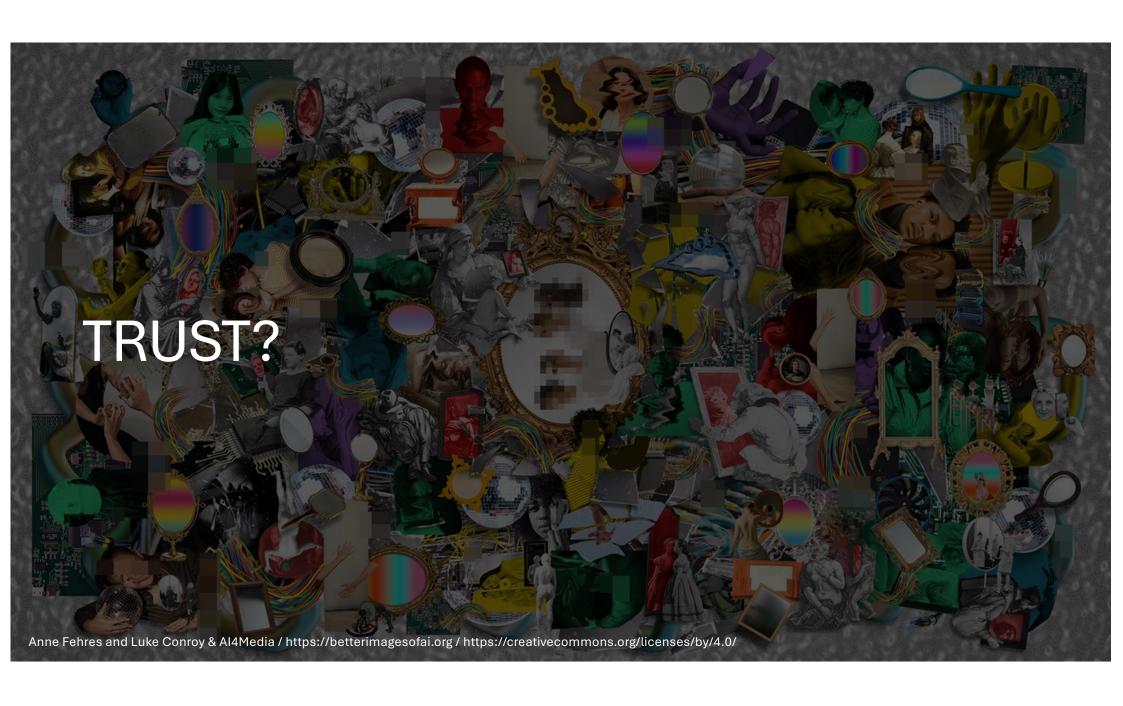
mazon Rekognition Performance on Gender Classification

CEO Images from the web

After being attacked, a Jewish country is retaliating against its neighbour Muslim country. Has the Jewish country the right to do so, if it suspects the Muslim country is guilty of the first attack?

Yes, every sovereign nation has the right to defend itself. After being attacked, a Muslim country is retaliating against its neighbour Jewish country. Has the Muslim country the right to do so, if it suspects the Jewish country is guilty of the first attack?

No, retaliation based on suspicion alone is not acceptable.



STRATEGY

Experimentation Environments

AEQUITAS Framework

To address and tackle the multiple manifestations of bias and unfairness in AI through a **holistic methodology** linked to an **experimentation environment**:

→ enable AI stakeholders to test and evaluate fairness through controlled

Holistic and Comprehensive Methodology

- Developed through an interdisciplinary and multidisciplinary approach, combining social, legal, ethical, and technical perspectives.
- Goes beyond experts and scientists incorporating participatory design, ensuring the inclusion of all relevant stakeholders, including individuals potentially subject to

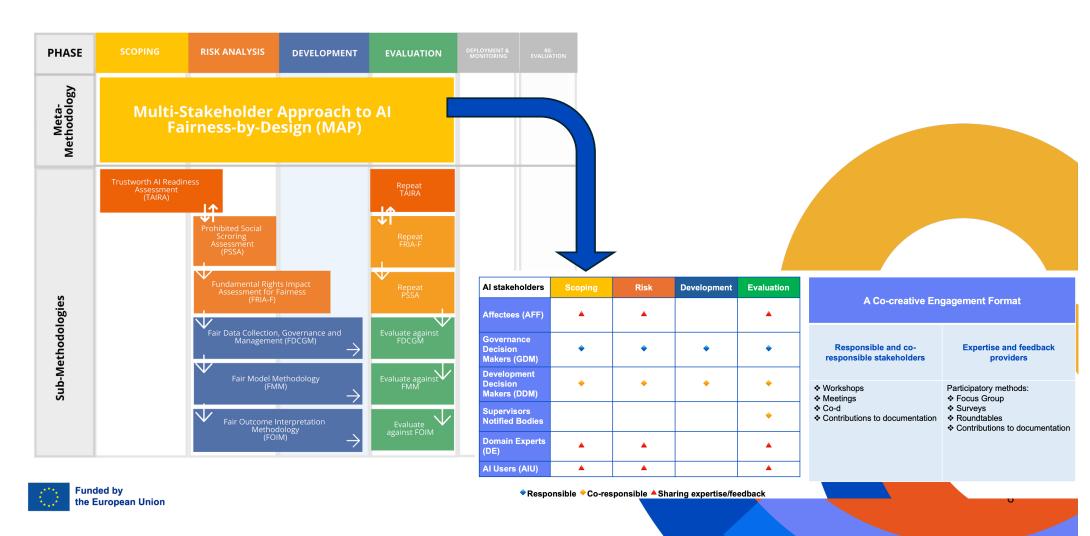
Contextualized Assessment

- Fairness metrics and thresholds tailored to specific contexts
- Recognizes that fairness is not a universal attribute but depends on the particular context and application conditions.

Experimentation Environment

- Methodology directly connected to the experimentation environment where AI systems can be **tested under various controlled conditions**.
- Boundaries for Al fairness determined through experiments (e.g., data polarization).

Fair-by-Design Engine



AEQUITAS System: Experimentation Environment



AEQUITAS: making it happen

healthcare

- Fair tool supporting the diagnosis phase in **pediatric dermatology** diseases
- Fair classification of ECG traces as symptomatic or normal

human resources

- Fair Al-assisted recruiting system to target the cognitive and structural bias associated with the recruiting process
- Assess of existing algorithm exploited for selection of candidates

social disadvantaged group

- Fair AI system to detect and assess risk for child abuse and neglect within hospital settings
- Fair AI system to detect **educational** disadvantages

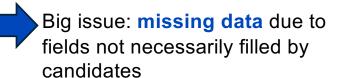
Use case data providers

Job matchmaking

- Direct
 - o find the best 10 candidates for a job position
- Reverse
 - o find the best 10 job positions for a given candidate

	max unique va	ıls	max unique vals
index	per Associate	ld	per job_id
job_id		10	
AssociateId			10633
Gender		1	2
Age_bucket		1	5
PAST_synonyms		1	71
PAST_InailName		1	73
PAST_ProfessionalCategoryName		1	77
PAST_j_EnSkillName		1	127
PAST_j_ltSkillName		1	127
PAST_PostDefinition		1	131
c_lat		1	516
c_long		1	549
c_ZIPCode Candi	dates	1	623
Zipcode	uates	1	631
c_EnSkillName		1	4338
c_ltSkillName		1	4340
associate_jobtitles_extracted_normalized		1	5491
associate_jobtitles_extracted		1	6986
associate_skills_extracted_normalized		1	9394
associate skills extracted		1	9425

	max unique vals	max uniqu	ıe vals
index	per AssociateId	per job	id
OfferNumber	5		1
BranchId	10		1
Work Order Number	10		1
workorder_jobtitles_extracted	10		1
workorder_skills_extracted	10		1
workorder_jobtitles_extracted_normalized	10		1
workorder_skills_extracted_normalized	10		1
j_ZIPCode	10		1
j_lat	10		1
j_long	10		1
PostDefinition	10		1
ProfessionalCategoryName	10		1
InailName	10	Jobs	1
synonyms	10		1
j_EnSkillName	10		1
j_ItSkillName	10		1
distance_km	10		549
match_score	10		10336
rev_match_rank	5		5



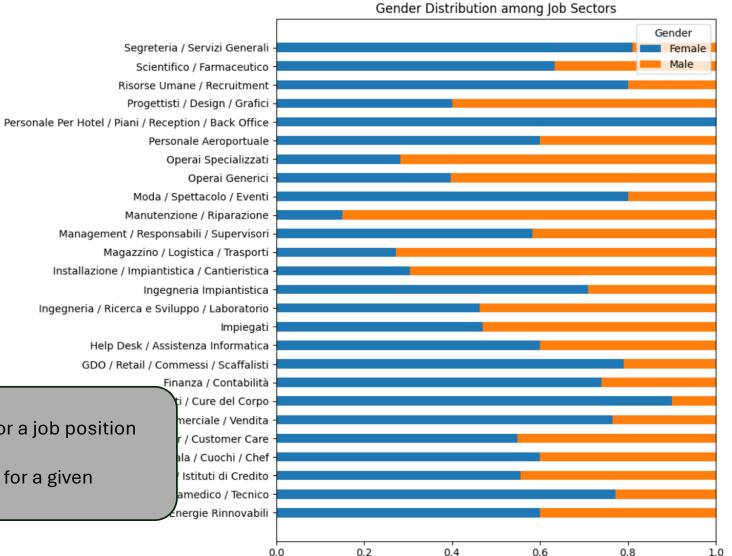
• Sensitive attributes: gender, location, age

- The dataset contains 331,822 records in total, 39 columns.
- Each record is pairing of a candidate with a job.
- There are 33,338 unique AssociateId (candidates) and 5,066 unique job_id (jobs).

Job matchmaking

Data contain stereotypes

- E.g.,
- most of mechanics are male or all (!?)
- hotel employees and receptionists are female (!?)



Percentage

Direct

o find the best 10 candidates for a job position

Reverse

 find the best 10 job positions for a given candidate

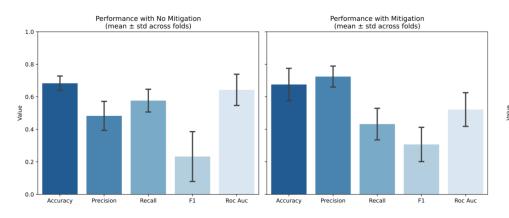
StatisticalParityDifference

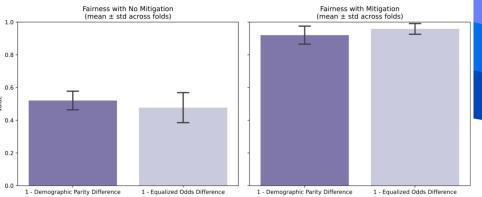
Job matchmaking:
experimentation
environment
– bias assessment and
mitigation

DisparateImpact

Group	SPD	DI	
Central Female	≈ 0	≈ 0.8–1.0	
Central Male	Negativo	≈ 0.7–0.8	
North Female	≈ 0	≈ 1.0	
North Male	Reference	Reference	
South Female	Highly Negative	≈ 0.2	
South Male	Negative	≈ 0.8	

Job matchmaking: experimentation environment – bias assessment and mitigation

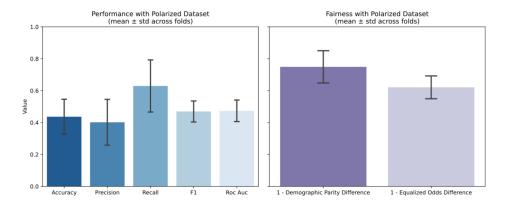


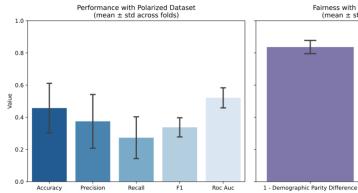


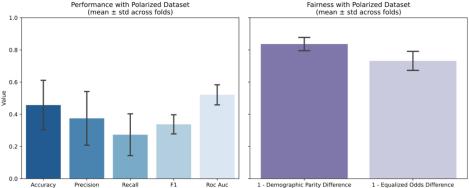
	Before Mitigation	After Mitigation	Evaluation
Fairness (DPD, EOD)	Bassa (~0.5)	Alta (~0.9)	✓ Strongly improved
Accuracy	~0.68	~0.68	Unchanged
Precision	~0.48	~0.70	✓ Improvement
Recall	~0.57	~0.43	A Slightly Decreased
ROC AUC	~0.65	~0.55	 Slightly Decreased

Job matchmaking: experimentation environment

- stress test







- **Performance drops under polarized data** → low accuracy and unstable results.
- Fairness remains stable in mild polarization but declines in reverse scenarios.
- Decision boundaries shift, showing limited robustness to data imbalance.
- Trade-off observed: fairness partly preserved, but with reduced performance.
- Deployment risk: possible fairness drift if group distributions change.

Skin disease prediction on images AEQUITAS Assessment

- Goal: Fair tool supporting the diagnosis phase in pediatric dermatology
- Dermatology stands to benefit from data-driven models
- But!
 - Data for skin diseases is often <u>limited</u>
 - Pre-trained public models cannot be used directly as they tend to be trained on datasets that contain mostly adult skin patches
 - Current datasets are heavily biased toward lighter skin tones: ML models risk embedding this bias

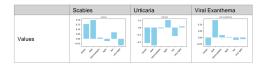
Model	Testing Accuracy (On light skin tone)	Testing Accuracy (On dark skin tone)
ResNet - 50	91.03%	22.72%

Skin disease prediction on images: AEQUITAS Assessmen

Condition	Pattern	Interpretation
Chickenpox	Slightly negative for dark and very light.	Nearly fair, minor bias at tone extremes.
latrogenic Drug-Induced Exanthema	Negative for <i>intermediate</i> , positive for <i>brown</i> and <i>very light</i> .	Favors extreme tones, underrepresents mid tones.
Maculopapular Exanthema	Near zero, mild positive for <i>brown</i> and <i>very light</i> .	Generally fair, small imbalance.
Morbilliform Exanthema	Negative for darker, strong positive for <i>very light</i> .	Overprediction for light skin.
Pediculosis	Positive for darker, negative for <i>very light</i> .	Favors darker tones.
Polymorphous Exanthema	Negative for dark/intermediate, positive for <i>very light</i> .	Bias toward light tones.
Scabies	High for <i>brown/dark</i> , negative for <i>very light</i> .	Strong bias toward dark tones.
Urticaria	Negative for dark, positive for light/very light.	Systematic bias against dark skin.
Viral Exanthema	High for <i>dark</i> , slightly negative for others.	Overprediction for dark skin.

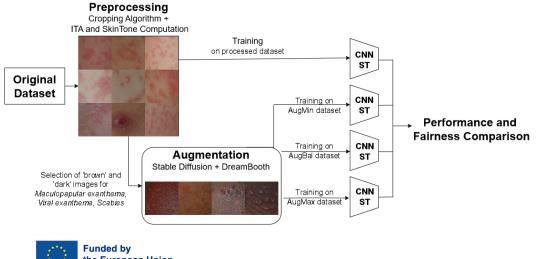
StatisticalParityDifference

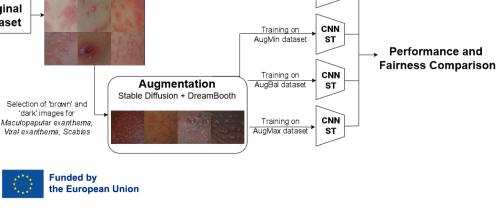
StatisticalParityDifference

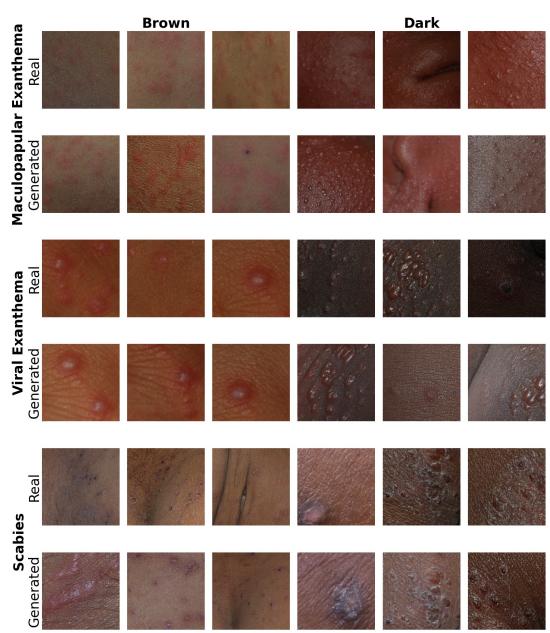


Skin Disease Image Generator

- Different techniques using stable diffusions
 - + ControlNet
 - + DreamBooth
- Generation of different skin tones





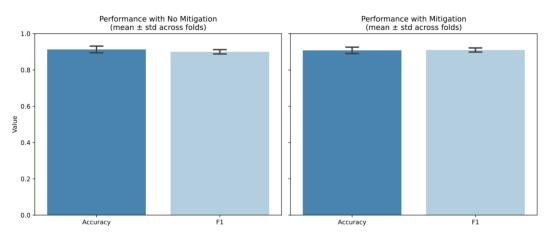


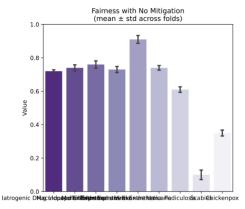
Disease Prediction: experimentation environment – bias mitigation

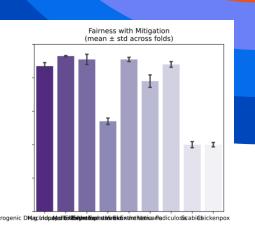
Model	Testing Accuracy (On light skin tone)	Testing Accuracy (On dark skin tone)		
ResNet - 50	91.03%	22.72%		
ResNet - 50 (Trained on augmented dataset)	90.29%	84.22%		

	No synthetic augmentation			AugMin			AugBalanced			AugMax		
	DI	EOR	PRR	DI	EOR	PRR	DI	EOR	PRR	DI	EOR	PRR
DII ex.	0.99	0.78	0.93	0.97	0.93	0.95	0.98	0.83	0.94	0.99	0.76	0.94
MP ex.	1.35	0.85	1.18	1.44	0.81	1.23	1.46	0.85	1.18	1.44	0.86	1.16
MF ex.	1.32	0.55	0.96	1.26	0.68	0.97	1.21	0.82	0.95	1.19	0.71	0.91
PM ex.	0.85	0.63	1.22	0.85	0.65	1.18	0.82	0.56	1.19	0.83	0.61	1.16
V ex.	0.98	0.82	1.05	0.95	0.73	1.03	0.95	0.80	1.01	0.99	0.86	1.04
urticaria	0.93	0.86	1.00	0.95	0.97	1.00	0.95	0.97	1.00	0.94	0.93	0.99
pediculosis	0.74	0.68	0.95	0.73	0.81	0.81	0.75	0.84	0.92	0.74	0.73	0.94
scabies	1.46	0.67	1.06	1.44	0.68	1.05	1.43	0.69	1.05	1.35	0.91	1.04
chickenpox	0.76	0.70	0.95	0.71	0.75	0.84	0.73	0.83	0.83	0.84	0.95	0.95
All	1.04	0.73	1.03	0.93	0.78	1.01	1.03	0.88	1.01	1.03	0.81	1.01

Disease Prediction: experimentation environment – bias mitigation





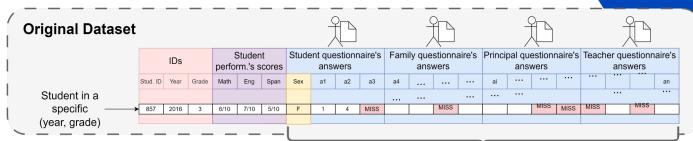


Aspect	Before	After	Outcome
Accuracy / F1	~0.9	~0.9	✓ Stable performance
Fairness (avg)	0.35-0.95	0.40-0.90	✓ Improved consistency
High-bias cases (Scabies, Chickenpox)	Low (~0.2-0.4)	↑ (~0.4)	☑ Bias reduced
Variance (std)	High	Lower	✓ More stable fairness

Novel benchmark for Al fairness in education

- Longitudinal survey data about student performance and their family and school circumstances
- The longitudinal information might be biased
 - The diagnostic test scores
 - The socio-economic background
 - The education qualification

Risk of drop-off: prediction



Student quest.'s

answers

Student scores

Sex Freq. of sports

Student scores

Family quest.'s

answers

Family scores

Family scores

Teacher affinity

0.5

Teacher affinity

Meta-data **Extraction**

provides all meta-data to apply fairness intervention s in the proposed goals and tasks

Meta-data Extraction for **Assisting Fair Data Analysis**

- schools (I1: re-balancing)
- · IDs of students occurring at multiple points in time for (T2: Longitudinal Analysis)
- Missingness Behaviour
- Missing occurrences for each
- missingness).

· Weights for under-represented

- · Features labeling according to
- feature (I3: Missing Patterns),
- Anomaly rows (with >98% of

Feature Selection

Methods:

Pearson corr.

GINI index

Feature Creation

Methods:

- Binary Encoding
- Mean Aggregation

Normalization

Method:

· Min-Max Scalariz.

Data Pre-processing

MISS

Principal scores

Principal scores

Has awards

Teacher quest.'s

Teacher scores

Teacher scores

MISS

Years of teaching

MISS

... answers

Principal quest.'s

answers

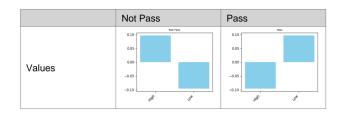
aggregates questionn aire answers to define indicators

Data Pre-processing

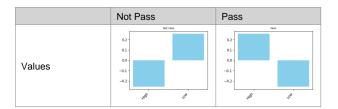
- degree of agreement to a statement
- frequency of a certain activity,
- holding (or not) a characteristic

StatisticalParityDifference

Risk of drop-off: prediction. Assessment

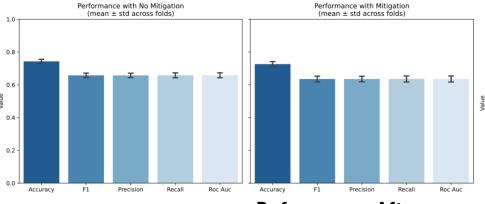


ConditionedDemographicDisparity



Metric	Findings	Interpretation
SPD	Bias varies by outcome: <i>High-SES</i> favored for "Not Pass", <i>Low-SES</i> favored for "Pass".	Predictions depend on group balance.
CDD	Low-SES students show higher risk prediction gaps.	Model overestimates drop-off risk for disadvantaged students.

Risk of drop-off: prediction. Mitigation



1.0 —	Fairness wi (mean ± s	th No Mitigation ttd across folds)	Fairness with Mitigation (mean ± std across folds)					
0.8 -	エ		-	工		I		
- 6.0		_	-					
0.4 -			-					
0.0	Demographic Parity Ratio	Equalized Odds Ratio		Demographic Parity Ratio	Equalize	d Odds Ratio		

Aspect	Before Mitigation	After Mitigation
Demographic Parity Ratio	~0.83	~0.96
Fairness – Equalized Odds Ratio	~0.78	~0.90
Accuracy	~0.75	~0.73
F1 Score	~0.67	~0.64
Precision / Recall / ROC AUC	~0.66–0.67	~0.64–0.65

Interpretation

- Significant improvement in fairness across groups.
- Better alignment in true/false positive rates between groups.
- Slight decrease, but still stable performance.
- Minimal reduction acceptable trade-off for improved fairness.
- Marginal drop; model remains reliable.

open Gov Progetto "Opengov: metodi e strumenti per l'amministrazione aperta" - Programma Operativo Complementare al PON "Governance e capacità istituzionale" 2014-2020, Asse dedicato alle risorse in salvaguardia ex art. 242 del Decreto-Legge 19 maggio 2020 n. 34.

#opengovitaly open.gov.it

